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Dynamic localization of Lyapunov vectors in Hamiltonian lattices
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The convergence of the Lyapunov vector toward its asymptotic shape is investigated in two different
one-dimensional Hamiltonian lattices: the so-called Fermi-Pasta-UlarPAwctiains. In both cases, we find an
anomalous behavior, i.e., a clear difference from the previously conjectured analogy with the Kardar-Parisi-
Zhang equation. The origin of the discrepancy is eventually traced back to the existence of nontrivial long-
range correlations both in space and time. As a consequence of this anomaly, we find that, in a Hamiltonian
lattice, the largest Lyapunov exponent is affected by stronger finite-size corrections than standard space-time
chaos.
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[. INTRODUCTION symplectic structurein contrast to the dissipative nature of
all other models that we have studjeth fact, we shall see

Lyapunov exponents are the most direct indicators andhat the main reason for the different scaling exponents is
quantifiers of deterministic chaos. From a knowledge ofdue to the ubiquitous existence of long-range space-time cor-
them, one can extract information about the invariant mearelations in one-dimensional Hamiltonian systems. In order
sure and the production of dynamical entropy. In spatiallyto show this, we perform thorough numerical studies of two
extended systems, the problem of characterizing the evoludamiltonian models—Fermi-Pasta-UlaPU) and ®* lat-
tion of infinitesimal perturbations is made more complextices. Both are autonomous Hamiltonian systems, demon-
(but also more interestindy the need of looking at propa- Strating space-time chadat least for the considered values
gation and diffusion properties. This has given rise to a seriesf the energy densily In our study, we start with the statis-
of approaches where either the growth rate in moving frametical properties of the Lyapunov vectors, and demonstrate the
has been introducetVelocity-dependent exponenits]), or  deviations from the Kardar-Parisi-Zhang universality class.
the propagation of perturbations with exponential spatial proThen we investigate the origin of these deviations. In prin-
files has been discussg?]. However, even without pretend- ciple, the “special” symplectic structure of the equations
ing to introduce new indicators or without going to higher- could be responsible for this anomaly. However, we exclude
order Lyapunov exponents, the largest one already contairibis possibility by showing that the scaling predicted by the
some interesting statistical information. In RE3], we in-  KPZ equation is recovered as soon as the fluctuating term in
deed showed that the spatial shape of the maximally expandhe tangentspace equations is replaced by a short-correlated
ing perturbation(hereafter called the Lyapunov vector for stochastic process. Thus the anomalous scaling of Lyapunov
simplicity) follows the same dynamical laws as Kardar- vectors in Hamiltonian lattices is due to the long-range cor-
Parisi-ZhangKPZ2) type interface$4]. Such a general anal- relations of some observables, and the existence of such ob-
ogy has several interesting consequences: we could quantigervables in typical chaotic Hamiltonian chains is the main
the amount of finite-size correctiongoth in time and result of our work.
spacg, finding, for instance, that deviations from the thermo- A further interesting consequence of the anomalous scal-
dynamic limit are of the order Il whereL is the lattice ing concerns the finite-size corrections affecting the largest
length. Another interesting consequence of the analogy is theyapunov vector. In fact, the deviations from the thermody-
observation that the logarithmic norm is a more appropriatenamic limit scale approximately as\il, and are thus much
way of estimating the largest Lyapunov exponent, as it averlarger than in standard space-time chaos, where they are on
ages the contributions coming from all spatial regions in-the order of 1/. Such a difficulty must be borne in mind,
cluding those where the Lyapunov vector is temporarily veryespecially when an accurate comparison with analytical pre-
small. Contrary to this, when calculating the largestdictions is attempted5]. It is precisely this slow conver-
Lyapunov exponent with the usuia} norm, the main weight gence that, in the absence of compelling theoretical argu-
comes from the region where the Lyapunov vector appears tments, has been misjudged as evidence of a logarithmic
be temporarily localized. divergence in Refl6].

The only one-dimensional models where the full corre- In Sec. Il we briefly summarize the formalism needed to
spondence with the scaling behavior of the KPZ equationnterpret the Lyapunov vector as a “roughening interface,”
does not hold are Hamiltonian chains. Understanding the oriand recall the key consequences of the analogy. In Sec. I,
gin of such a difference is precisely the task of this paperwe introduce the two models. Section IV is devoted to a
Our previous analysis of coupled standard miggjsreveal-  thorough discussion of the numerical results in both cases,
ing a nice correspondence with KPZ dynamics, already sugncluding finite-size corrections. In Sec. V we search the ori-
gests that the difference should not be traced back to thgin of the anomalies found and discussed in the previous
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one. Section VI deals with a direct investigation of spacedn Fourier spaceAN:=\(L,t)—v can be expressed as
time correlation properties of the proper observables. Finally,

1 1 1 Kmax
in Sec. VII, we summarize the main open problems. A)\=2vf K2S(k, t)dk, ©6)
1L

II. LYAPUNOV VECTORS AS INTERFACES . .
where S(k,t)={(|h,|?) is the spatial power spectrum of

In this section we briefly recall the results derived in Ref.h(x,t) with an ultraviolet cutoff atk,,.. (given, in the
[3] for the scaling behavior of the Lyapunov vector in spacejpresent case, by the inverse of the lattice spacing
time chaos, and introduce the necessary formalism to discuss For an initially flat profile, the power spectru®(k,t)
the problem in the next sections. We consider a figll,t) evolves in time according to
that depends on one spatial coordinate[O,L] and timet,
and that obeys some nonlinear evolution equations yielding S(k,t)~k?6(kt’—consj. (7)
space-time chaos. For calculating the maximal Lyapunov ex- . . . .
ponent, one has to follow the evolution of an infinitesimal Calculation of the interface width according to
perturbationw(x,t), obeying the linearized equations around

the chaotic solutiom(x,t). It is convenient to introduce the WZ(L,t)=J S(k,t)dk,
logarithmic amplitude of an infinitesimal perturbation as a n
scalar field

and comparison with Ed4), gives
H(x,t)=log|[w(x,t)][, 1) vy=—1-2a, 6=8l«a. (8

where||- || is some spatially local norm. In R€f3] we have By substituting Eq(7) into Eq. (6), we obtain
found that in a rather broad class of systehiéx,t) exhibits
the scaling behavior predicted for roughening interfaces. a—a| = th
More precisely,H(x,t) belongs to the universality class of AML, D=L F F
where the functior has the same scaling &
Upon recalling thatv=1/2 andB=1/3, the above expres-

the Kardar-Parisi-Zhang equation
sion reduces to the one derived in Réf]. In particular, we

and time process, and, v, andv are suitable effective note that, si_nc§(z) tends to a constant fa—c, the _finite-
parameters. Although we cannot explicitly derive an equa-Slze correction scale asllivhenever the analogy with KPZ

tion of like Eq. (2) for the fieldH(x.t), in Ref.[3] we dem- dynami_cs holds. Conversgly, in the infinite-space limit, the
onstrated that the scaling propertiestofx,t) for large sys- correction to the asyr[‘?,go“c value of_th_e Lyapunov exponent

tem sized. and large observation timégoincide with those decreases .aé}‘(t)%t - Both predlct|pns Were Success-
of the solution of Eq/(2). Below we recall these properties fully tested in Ref[3]. Here we have derived the expressions

It is known that the Width " for general values ofr and B, and we shall see later on that
they still hold in the case of Hamiltonian systems although

_ TR 72 with different values of the critical exponents. In particular,

WL, = V(h%)=(h) ©® we will use relation(4) to find the scaling constarg, look-
ing for the temporal growth of the interface width in a very

(2a—2)|a

: (€)

hy=Dhy,+ v(h)?+ v+ &(x,t), 2

where £(x,t) is a zero-averagé-correlated(both in space

of an initially flat interface evolves, for sufficiently larde

andt. as large system. For a determination of the scaling constant
’ we look at the spatial spectru(k), and findy from Eq.
{8 (7), thereby obtaining
W(L,t)~L F(F) 4 v+ 1
a=-—5. (10
with = 1/2 andB=1/3. The scaling functiof (y) behaves
linearly for smally, and converges to a constant value for Il MODELS
y—oo. This implies that the interface profile converges, as- '
ymptotically in time, to a Brownian motion, sind&/(L,) We consider a lattice df oscillators with periodic bound-
~ L. ary conditions described by the local displacemgntand

Now we want to derive the expression for the scalingmomentump;. The reference Hamiltonian reads
behavior of finite-size and finite-time corrections to the

Lyapunov exponent. The Lyapunov exponenis nothing _ pi2
but the average velocit{H,). From Eq.(2), it is clear that H_Ei 7 V(G a) U a) |, (12)
the dependence of on L andt is entirely contained in the
nonlinear term where V(x) is the nearest-neighbor interaction potential,
while U(x) corresponds to the on-site potential. All variables
AL, =(h)=v+1{(hy)?). (5) are assumed to be scaled so as to be adimensional.
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In the following we shall consider two main model(s)
the so-called Fermi-Pasta-Ulaph model, characterized by 107
V(x) =x%/2—x"*4 and by the absence of external forces; andy
(i) the ®* model, characterized by harmonic interactions, *
V(x)=x?/2, and by a double-well on-site potential(x)= 107
—X?[2+ x4,

The dynamical equations of the FPU model read

. —16[

ai=pi, 10

Pi=(i+1— 20 +0i—1)— (G121~ 9)°— (qi-1— ),
(12

10T 1
. . . . . o , | . |
Whl_le the Ilneanz_ed equations for the evolution of an infini- 0 500 — 1000
tesimal perturbatiod?; andQ; are site 1
Q- =P FIG. 1. A snapshot of the profile; for the ®* model in a chain
1 1

of length L=1024 after a long transient. The energy density is

. E/L=5, as in all other numerical studies presented in this paper.
Pi=[1-3(0i+1—d)?1(Qi+1— Q)

+[1-3(di-1—9)?1(Qi_1— Q). (13)  flights). Such large fluctuations, which correspond approxi-
mately to 27 orders of magnitude in the snapshot of Fig. 1,
Similarly, the dynamical equations for tiie* model are suggest the possibility of numerical problems in the integra-
: tion of the profile. In practice, the accuracy of the integration
qi=Pi, depends on the relative amplitude of the perturbation in

] neighboring sitegsee the structure of Eg§l3) and (15)].
pi:(Qi+l_2qi+qifl)+qi_Qi3a (14)  The approximate continuity of the Lyapunov vector makes

such concerns almost immaterial. A more serious obstacle in
the simulation of long chains is the possibility that eitf@y]
or |P;| becomes so small that its squared valoeeded to

and the corresponding equations for the perturbation read

Qi=Pi, determinew;) is smaller than the smallest useable number on
. ) the computer. In some of our simulations we have overcome
Pi=Qi+1—2Qi+ Q-1 +(1-307)Q;. (15 this problem by either writing a suitable routine or integrat-

: . ing the equations in quadruple precision. For yet larger val-
The two models have been singled out as representative eﬁ—g q M ble p y g

. ~“Qles ofL, |Q;| and|P;| themselves can become too small, but
amples of two different classes of systems: the FPU equatiofs checked that this has never occurred in our simulations
describes the dynamics of an isolated system where the mo- '
mentum is conserved as well as the energy; indenodel,
the presence of an on-site potential breaks the translational |v. NUMERICAL EVIDENCE OF ANOMALOUS
invariance and the conservation of the total momentum. Such BEHAVIOR
a difference proves to be crucial, for instance, in determining o _
heat-conduction properties, since heat conductivity is typi- A. Estimating the spatial exponenta
cally anomalous in the first case, while it is normal in the |n order to estimate the spatial exponentwe have made
latter contex{8]. use of Eq(10), determiningy from the power spectrum. The

In both cases we have decided to fix the same value of thgnear perturbation field has been allowed to evolve for vari-
energy densitye/L=5. The two models have been simu- ous lattice lengths, until a stationary regime is attained for
lated by implementing the so-called bilateral symplectic al-the witdh of the Lyapunov vectors. The spec®k) for
gorithm[9], with a time stepAt=0.01. This choice already lengthsL =256, 512, 1024, and 2048 in the FPU model are
proved good enough to guarantee that energy fluctuationgported in Fig. 2. The very good overlap indicates that the
remain smaller than I0. Additionally, as a further check, |attice-size dependence is already quite negligible in this size
some of the simulations were successfully compared with theange. In the inset, we report the logarithmic derivative
McLachlan-Atela algorithm. =A(log S)/A(logk), computed by looking at doubling values

In analogy to Ref[3], we introduce the local norm of the of the wave number. It converggfor k—0) to a value
perturbationP; ,Q; as w;(t)= \/Pzi +Q2i , and call the field clearly below—2. As the exponeny is connected tav by
w;(t) the “Lyapunov vector.” We interpret its logarithm relation (10), we can conclude that the scaling behavior is
H;(t)=Inwi(t) as the height of a pseudointerface. In Fig. 1definitely different from that expected for the KPZ univer-
we show a snapshot of the “interface” profile for tde*  sality class ¢=—2). However, a precise estimate pfis a
model. The profile looks definitely rough, although at first it difficult task both because of statistical fluctuations that are
seems to demonstrate larger deviations than one expects fovary prominent in the small wave number regime, and in
Brownian motion (in fact, some regions resemble Levy view of the observed residual dependence of the logarithmic
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FIG. 2. The spatial power spectrum of the logarithmic prdfile FIG. 4. Temporal growth of the width of the interfadéfor the

for the FPU modelafter a sufficiently long transient to guarantee chain lengthsL =256, 512, 1024, 2048, and 8192 in the FPU
reaching the asymptotic stateThe various curves refer th  model. Only for the largest lattice length is there an indication of a
=256, 512, 1024, and 2048. In the inset, we report the logarithmiglateau for the logarithmic derivativénsed, in between the initial
derivative. nonuniversal growth and saturation.

slope onk. A best fit of the almost linear region in Fig. 2 . consists of straight lineghis is the localization that one

yields y=—2.5. By approximately accounting for the Sys- gynects in disordered systems in the absence of any temporal
tematic growth, we suggest that= — 2.6+ 0.1, although the dependence of the field variahle

estimate of the error is quite uncertain, precisely in view of
the slow but systematic dependence of the slopé.orhe
above value corresponds to=0.8+0.05, which can be in-
terpreted as evidence of a superdiffus{fractional Brown- In order to find the temporal exponesit we followed the
ian) spatial profile. development of the interface starting from a flat ¢gnéat

The same scenario is qualitatively confirmed by the analycorresponds to a spatially uniform initial linear perturbation
sis of the data for thé@* model(see Fig. 3 We again find  W;(0)]. Equation(4) can be tested by looking at the temporal
a good overlap among the spectra fox 2048, 4096, and evolution of the widthW(L,t). In Fig. 4 we have reported its
8192, confirming that the system size in itself is not toodynamics forl =256, 512, 1024, 2048, and 8192 in the FPU
small. On the other hand, the analysis of the logarithmignodel, while Fig. 5 refers to thé* problem[10]. One can
slope reveals a consistent dependence ain k. While we  see that for short times there is a slow growth that is essen-
can definitely confirm thay<—2 also in this case, an esti- tially determined by the structure of the specific model. In
mate ofy iteself is more problematic. We can conjecture thataddition, there is an intermediate range that grows With
y=—2.8+0.2. One should also note that=—3 is a limit  characterized by an almost power-law increase. Finally, we
value that corresponds to an exponential localization, wherebserve the saturation leading to a statistically statiotiary

time) interface(the spectra in Figs. 2 and 3 were computed in

B. Estimating the temporal exponentg

O — this regime. The insets, wherein the logarithmic derivative
Sk B(z)
10 17 W(t)| 06
2l r ] _
107 04
10 ] 0.2
0
10 . 10' a
2 Ll Ll Ll L
10 _ = =
107 10° 107 0" k10
0 | | | | |
FIG. 3. The spatial power spectrum of the logarithmic prdfile 10100 10" 10° 10° 10" ¢ 10°
for the ®* model in a statistically stationary state. The various
curves refer toL=2048 (triangles, 4096 (squares and 8192 FIG. 5. Same as Fig. 4, but for tide* model. The chain lengths
(circles. The logarithmic derivative is shown in the inset. are 512-8192.
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FIG. 6. The Lyapunov exponeif(L,>) vs the chain length for the FP&) and®* (b) models.

B is reported, show that yet larger lattice sizes would beversus a ratio of suitable powerstadndL in order to test the
needed in order to observe a clear plateau. In fact, the maxialidity of Eq. (9). A reasonably good overlap has been
mum value of the slope keeps increasing witland only for ~ found by reportingt/L* on the horizontal axis, and multi-
L =8192 can we find evidence of a constant-slope region. Oplying |\ —\ .4 by L%*® (the large deviations observed for
the basis of these last results, we can estimate0.55 short times are absolutely irrelevant, as they concern the ini-
+0.05 for the FPU model an@=0.6+0.05 for thed®* tial regime when no scaling behavior can be expected at all
model. Note, that the error is mainly statistical: there is noThe exponent 1.4 should be compared with the dynamical
simple way to estimate the systematic deviations which arexponentz that, on the basis of previous simulations, turns
certainly visible if we look at the height of the curves in the out to be around 1.45. Such a difference is certainly compat-
insets. In any case, the estimatgdvalues are definitely ible with the relatively large errors on the estimates of heth
larger than 1/3, the value predicted by the theory for KPZand 8. On the other hand, the vertical scaling factor 0.45
interfaces. should be compared with-22a~0.4: the deviation is the
Before going on, let us note that although the spatial andame as in the previous case, confirming that the inaccuracy
temporal exponents are significantly different from the val-is around 0.05. Once more, however, we want to warn
ues expected for the KPZ equation, the same is not true fargainst the existence of corrections that might coherently
the dynamical exponert= 8/« that is remarkably close to drift the various exponents towards slightly different values.
3/2 in both cases. By taking the central valuesdoand g3, The opportunity of considering larger lattices is specifically
we obtainz=1.45 and 1.5 for the FPU andi* models, re- desirable for theb* model, since we could not perform a
spectively. This is an indication that a single physical effectreliable finite-size scaling analysis: in that case, we limit our-
is responsible for the above observed anomalies. selves to reporting in Fig.(6), the clearly slow dependence
of the Lyapunov exponent on the system size.

C. Finite-size corrections to the Lyapunov exponent

We now conclude the discussion on the scaling properties
of the Lyapunov vectors with the finite-size analysis of the o
Lyapunov exponent in the FPU model. The dependence of 10 -
A(L,») onL can be observed in Fig(&. With the help of §
simulations performed with a longer chaih €8192) and ~ |
assuming a power-law convergence to the asymptotic value, &g .
we find that\ ;5:=A(o°,%)=0.265+ 0.001, while the conver- (I<
gence rate is- 0.5+ 0.1. Before comparing with the theoret- -
ical expectations, let us note that the finite-size corrections
are definitely larger in Hamiltonian problems compared to
dissipative ones, and this should be taken as a serious ob- a1 | | |
stacle to giving precise estimates. In view of this difficulty, 10 107 107 -14 10°
we suspect that most of the estimates of the largest exponent
obtained in one-dimensional systems should be carefully re- F|G. 7. Scaling behavior of the finite-size corrections of the
examined. Lyapunov exponent in the FPU model. The curves correspond to

The results of a more detailed analysis of the finite-Sizahe systems of lengths= 256, 512, 1024, 2048, and 8192om
deviations are reported in Fig. 7, where they are depicte@dottom to top. The dashed line has a slopel/3.
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FIG. 8. Scaling properties of the field in the linearizefi model[Eq. (15)], when the multipliersv;(t) are reshuffled at regular intervals
of time T=40 (a smooth connection between old and new multipliers was performed during the time ifiten). The graphs should be
compared with Figs. 3 and 5.

V. ORIGIN OF ANOMALOUS SCALING IN THE with a random noise. More precisely, we have proceeded by
LYAPUNOV VECTOR first removing spatial correlations with a random reshuffling

Having observed significant differences with respect 1o°f the multipliers, i.e. by replacinyf;(t) with M;;) , where

the KPZ-class behavior, we shall now discuss the possiblé(') IS a bijective random functlon from the mterval.; L
sources for the observed anomalies. There are at least t oonto itself. In order to get rid of temporal_c_o_rrelatlons, we
reasons for these ' urther reshuffl§randomly change the functigii)] everyT

(i) The equatioﬁ describing the dynamics of the LyapunO\}'me units. Finally, since the instantaneous switch from one

e (19 and(19] = of wave typesecond ordern 2,11 OVE" Lncton oduces n undesied dcont
time), and thus qualitatively different from the KPZ equa- Y,

tion. where inertia does not enter. It is therefore not ClealIive time intervals. As a result, all possible correlations are
whetherH; = In|jw]| indeed satisfies an effective KPZ equa- destroyed, and we are in the position to test whether the

. - ) e tangent-space dynamics does really imply a KPZ-class be-
tion on sufficiently large spatial scales and over sufﬂmentlyh 7 ; hat th g i
long times. avior. From Fig. 8, one can see that the expected scaling

(if) The effective noise may have long-range correlation behavior is fully restored for what concerns both spatial and

in space and/or in time. Indeed, the recent study of heaemporal s_calmgs. Furthermore, we have calculated the

conductivity in one-dimensional chains has revealed that agkewnesg H®)/W* and the kurtosigH*)/W*—3 of the in-
least the correlations of the global heat flux decay with aerface profilegwhereH=H—(H)). These quantities mea-
power law in the FPU modé¢ML1]. On the other hand, this is sure the closeness to the Gaussian distribution. In the origi-
not true in the®* model, where thermal conductivity is nor- nal dynamics of the Lyapunov vector these quantities are
mal, so that this hypothesis needs a careful examination. already quite smalls=—0.06 and~ — 0.4, respectively. Af-

ter removing correlations, they are further reduced to
~0.025 and~= — 0.1, meaning that the distribution is Gauss-
ian with a good accuracy. We can thus conclude that the first
concern is unmotivated, and we should really attribute the

In order to test whether the discrepancies discussed iBnomaly to the existence of long correlations in the dynam-
Sec. IV are due to the lack of a connection with the KPZjcs.

equation, we have decided to remove the possible long-range
correlations potentially contained in the spatio temporal be-
havior of the multipliers

A. Tangent space dynamics in the presence of short
range correlations

B. Role of correlations
Recent studies of the scaling behavior of the KPZ equa-

Mi(t):=1-3(q+1—0)? (18 tion in the presence of either long spatial or temporal corre-
lations showed that sufficiently long-ranged correlations can
(for the FPU modseland indeed modify the critical exponentsee Ref[7], and ref-
) erences therejn As a particular example, we discuss the
M;(t):=1-3q; 17 effect of long-range spatial correlations. Upon assuming that

. the spatial power spectruy(«) of the noise tern¥ in Eq.
(for the ®* casg. In order to preserve as much as possible of(2) behaves as

the original structure, we have preferred to suitably modify
the M;(t) in Egs.(13) and (15) rather than replacing them Si(k)=K"2" (18
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B L L - are destroyed. The results for the power spectra in the FPU
' ' "] ] and®* problems are reported in Figs. 9 and 10, respectively.
4 1 We see that the scaling exponentsind 8 are now closer to

] the KPZ values, but still there is a distinct difference. In
q ] particular, fory we obtain values smaller than 2, what

1 3 corresponds tar>1/2. We can, therefore, conclude that both
spatial and temporal correlations of the multipliévk(t)

1 play crucial role in the anomalous scaling of the Lyapunov
vector interface.

S(k) N

VI. DIRECT STUDY OF SPACE-TIME CORRELATIONS

e In this section we report the results of direct studies of the

10 correlation properties in the Hamiltonian lattide=gs. (12)
FIG. 9. Power spectrum of the logarithmic profile for the FPU @nd (14)]. Usually one looks at the simplest observables,

model after a reshuffling of the multipliers. The logarithmic deriva- Namely, the variablep;(t), and g;(t) themselves. In our
tive is reported in the inset. case, these observables do not exhibit any interesting behav-

ior: in the ®* model, no long-range correlations are present
in the region of small wave numbers, it was found throughat all, while in the FPU model, the;’s show a trivial diffu-

renormalization group calculation&?2] that, for > 1/4, sion due to the lack of external forces. Contrary to the prop-
erties of positions and momenta, in R¢L1] it has been

2 1+2¢ shown that in the FPU lattice the local heat flux is character-

a=1- §(1_ ¥, B= 5—2¢° 19 jzed by nontrivial correlations. This dependence on the ob-

servable indicates that the problem of characterizing the cor-

A blind use of the above formulas for the valuesaofind 8 relations is rather difficult{14]. In this paper, without
presented in Sec. IV gives inconsistent results: from the firspretending to derive general conclusions, we limit ourselves
relation it follows ¢~ 0.7, but the resulting valug=0.66 is  to studying the multiplierd$/;(t), defined as in Eq$16) and
too large compared with our numerical findings. The picture(17). All the correlation functions reported in this paper have
does not change even if we refer to the theoretical predicbeen computed by Fourier-transforming a sufficiently long
tions of the replica methofd3], since this latter approach is signal (patterny sampled every 0.1 time units, and by after-
equivalent to the former one faf>1/2. wards averaging over at least 1000 different realizations.

Since there is no direct way to connect the original Let us start by discussing the FPU case. In Fig. 11 we
tangent-space dynami¢ggs. (13) and (15)] with an effec- report a gray scale plot of the logarithm of the amplitude of
tive KPZ [Eq. (2)], we cannot directly estimate the correla- the correlation functiorCy(i,t)=(M;(7)M;,i(7+1))| of
tion properties of the effective nois&x,t). However, we the multiplier. There one can see that the strongest correla-
can demonstrate that the anomalous scaling cannot be etiens are either found along the line=vt [a best fit yields
plained with spatial correlations like E(L8) only. To getrid v =2.1(1)], or fori=0. This is consistent with the previous
of spatial correlations we performed one single reshuffling ofanalysis of the local heat flutsee Ref[11]) in the same
the multipliersM; . In this procedure the temporal one-site model, which also revealed the existence of a propagation of
correlations remain unaffected, while the spatial correlationgorrelations with a constant velocity that was traced back to

2
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| L o el A PR 1ol L MR 100 sl Lol el sl Lo
10 107 107" k 10° 10" 10° 100 ¢ 10t 10°
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FIG. 10. The same as Fig. 8, but the reshuffling is performed only once; as a result, only spatial correlations are destroyed, but not
temporal ones. The logarithmic derivativéssets still deviate from the standard values of the KPZ-class behavior.
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|C(vi,1)|
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10
10° 10" 100 ¢ 10°

FIG. 13. Decay rate of temporal correlations of the multiplier in
a moving frame with velocityv=2.1(1) for chain lengthsL
=128, 256, 512, and 1024 in the FPU modfebm bottom to top.

FIG. 11. Gray scale plot of the logarithm of the absolute valueThe sjope of the dashed lidrawn as a referengés —1.2.
of the correlation function of the multiplier for the FPU model in a

chain of 256 oscillators for a time span equal to 26.4. Space rungq 1 Thys it is even more clear that correlations due to the
horizontally, while time flows vertically from top to bottom. Dark

. . propagation are crucial as well. A direct estimate of correla-
regions correspond to stronger correlations. : X .

tions along a properly moving frame yields the results re-

ported in Fig. 13, where an apparent power-law decay is

tr?eer ?T:Jsljé:ncoupled behavior of the low wave number Foubbserved. Moreover, we observe that, as in Fig. 12, the decay

since the anomaly is neither purely spatial nor purely tempo
ral. Looking more carefully at the pattern in Fig. 11, we find
that equal-time spatial correlatiofise., the uppermost hori-
zontal slice in the figureare 6 like (the same also holds for

4
the ®* mode). On the other hand, the standard temporaltrate this by reporting the temporal power spectiifw) of

correlation in a given site decays as power l@ee Fig. 12 the multiplier M;(t) in Fig. 14, where one can observe a
Even though the rate cannot be accurately determined, oqew-frequency Idivergencé E(’w)~w5 with 8= —0.47

can confirm that such temporal correlations alone are no ; =
sufficient to explain the anomalous behavior of the_o'os' From the approximate formuta=(0.22-0.845),

: : erived in Ref[12] for purely temporal correlations, we find
Lyapunov vector, since the decay is nevertheless too fast t§%0.62. Upon inverting Eq(10), we find y~—2.2. This

be compatible with the scaling behavior of the Lyapunovresult is in close agreement with the direct estimate after

having removed spatial correlatiofsee the inset of Fig. 20

facelike analysis of the Lyapunov vectors.

In the ®* model we do not observe propagation of corre-
lations with a definite velocity. In this case, there is only a
slow decay of the one-site correlatio@s,(0,t). We illus-

2(®)

10*

10
10°
) ) o 10—2 1 1 | |
FIG. 12. One-site temporal correlatioBig;(0;) of the multipli- 10° 107 10! @ 10

ersM;(t) in the FPU model. Data for different chain lengtffisom
bottom to top,L=128, 256, 512, and 1024lemonstrate conver- FIG. 14. Temporal power spectrum of the multipliers in thé
gence to a power law decay with the exponent-0.9 (dashed model for a lattice of length. =2048. The inset shows the local
line). logarithmic derivative at small frequencies.
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Therefore, we again confirm that also in ti€' temporal  proach is, however, insufficient to describe the whole space-
correlations alone are not sufficient to account for thetime structure of the multiplier correlations. In particular, it

anomalous scaling exhibited by the Lyapunov vectors. does not predict any slow decay of correlations in ¢hé
model, but also fails to predict the correct decay of the
VII. CONCLUSIONS purely temporal correlations of multipliers in the FPU case.

) ) ) So far, one can only suspect that the existence of conserva-
In this paper we have carried on a detailed study of thgjon |aws is responsible for long-range correlations: energy is
scaling properties of the Lyapunov vector in two Hamil- conserved in both the FPU ade* models, and its diffusion
tonian (Fermi-Past-Ulam andP* model$ chains, finding properties might be the ultimate source for the similar behav-
clear evidence of an anomalous behavior with respect to thgys exhibited by two otherwise rather different models.
previously studied one-dimensional space-time chaotic syg4owever, only when a global coherent description of the
tems. Although the data presented are restricted to one set gjng-time properties of the relevant observables will be ob-
parametersincluding the density of energyfurther selected  tained, it will be possible to establish whether the near equal-
simulations suggest that this anomaly exists at least in @y of the scaling exponents observed in FPU drtimodels

broad parameter region if not everywhere. This anomaly igs indeed an indication that both belong to the same univer-
analogous to the divergence of the heat conductiliitya  gajity class.

broad subclass of one-dimensional Hamiltonian systems

the sense that both phenomena can be traced back to the
existence of long-range correlations of suitable observables.

A deeper understanding of such anomalies can therefore This work was made possible by the financial support
arise only from a better comprehension of spatiotemporaprovided by the NATO Contract No CRG.973054. The In-

correlations. In Ref[11], it was shown that in the FPU stitute for Scientific Interchange in Torino and the Max-

model they are connected with the “hydrodynamic” behav-Planck Institut fu Physik Komplexer Systeme in Dresden

ior of the long-wavelength Fourier modes, and that self-are acknowledged for the hospitality that allowed us to make
consistent mode-coupling theory enables one to predict theome progress. Both authors thank S. Lepri for useful dis-
correct divergence rate of the heat conductivity. Such an apsussions.
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