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Dynamic localization of Lyapunov vectors in Hamiltonian lattices
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The convergence of the Lyapunov vector toward its asymptotic shape is investigated in two different
one-dimensional Hamiltonian lattices: the so-called Fermi-Pasta-Ulam andF4 chains. In both cases, we find an
anomalous behavior, i.e., a clear difference from the previously conjectured analogy with the Kardar-Parisi-
Zhang equation. The origin of the discrepancy is eventually traced back to the existence of nontrivial long-
range correlations both in space and time. As a consequence of this anomaly, we find that, in a Hamiltonian
lattice, the largest Lyapunov exponent is affected by stronger finite-size corrections than standard space-time
chaos.
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I. INTRODUCTION

Lyapunov exponents are the most direct indicators
quantifiers of deterministic chaos. From a knowledge
them, one can extract information about the invariant m
sure and the production of dynamical entropy. In spatia
extended systems, the problem of characterizing the ev
tion of infinitesimal perturbations is made more compl
~but also more interesting! by the need of looking at propa
gation and diffusion properties. This has given rise to a se
of approaches where either the growth rate in moving fram
has been introduced~velocity-dependent exponents@1#!, or
the propagation of perturbations with exponential spatial p
files has been discussed@2#. However, even without pretend
ing to introduce new indicators or without going to highe
order Lyapunov exponents, the largest one already cont
some interesting statistical information. In Ref.@3#, we in-
deed showed that the spatial shape of the maximally exp
ing perturbation~hereafter called the Lyapunov vector fo
simplicity! follows the same dynamical laws as Karda
Parisi-Zhang~KPZ! type interfaces@4#. Such a general anal
ogy has several interesting consequences: we could qua
the amount of finite-size corrections~both in time and
space!, finding, for instance, that deviations from the therm
dynamic limit are of the order 1/L, whereL is the lattice
length. Another interesting consequence of the analogy is
observation that the logarithmic norm is a more appropr
way of estimating the largest Lyapunov exponent, as it av
ages the contributions coming from all spatial regions
cluding those where the Lyapunov vector is temporarily v
small. Contrary to this, when calculating the large
Lyapunov exponent with the usualL2 norm, the main weight
comes from the region where the Lyapunov vector appear
be temporarily localized.

The only one-dimensional models where the full cor
spondence with the scaling behavior of the KPZ equat
does not hold are Hamiltonian chains. Understanding the
gin of such a difference is precisely the task of this pap
Our previous analysis of coupled standard maps@3#, reveal-
ing a nice correspondence with KPZ dynamics, already s
gests that the difference should not be traced back to
1063-651X/2001/63~3!/036207~9!/$15.00 63 0362
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symplectic structure~in contrast to the dissipative nature o
all other models that we have studied!. In fact, we shall see
that the main reason for the different scaling exponents
due to the ubiquitous existence of long-range space-time
relations in one-dimensional Hamiltonian systems. In or
to show this, we perform thorough numerical studies of t
Hamiltonian models—Fermi-Pasta-Ulam~FPU! andF4 lat-
tices. Both are autonomous Hamiltonian systems, dem
strating space-time chaos~at least for the considered value
of the energy density!. In our study, we start with the statis
tical properties of the Lyapunov vectors, and demonstrate
deviations from the Kardar-Parisi-Zhang universality cla
Then we investigate the origin of these deviations. In pr
ciple, the ‘‘special’’ symplectic structure of the equation
could be responsible for this anomaly. However, we exclu
this possibility by showing that the scaling predicted by t
KPZ equation is recovered as soon as the fluctuating term
the tangentspace equations is replaced by a short-corre
stochastic process. Thus the anomalous scaling of Lyapu
vectors in Hamiltonian lattices is due to the long-range c
relations of some observables, and the existence of such
servables in typical chaotic Hamiltonian chains is the m
result of our work.

A further interesting consequence of the anomalous s
ing concerns the finite-size corrections affecting the larg
Lyapunov vector. In fact, the deviations from the thermod
namic limit scale approximately as 1/AL, and are thus much
larger than in standard space-time chaos, where they ar
the order of 1/L. Such a difficulty must be borne in mind
especially when an accurate comparison with analytical p
dictions is attempted@5#. It is precisely this slow conver-
gence that, in the absence of compelling theoretical ar
ments, has been misjudged as evidence of a logarith
divergence in Ref.@6#.

In Sec. II we briefly summarize the formalism needed
interpret the Lyapunov vector as a ‘‘roughening interface
and recall the key consequences of the analogy. In Sec
we introduce the two models. Section IV is devoted to
thorough discussion of the numerical results in both cas
including finite-size corrections. In Sec. V we search the o
gin of the anomalies found and discussed in the previ
©2001 The American Physical Society07-1
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ARKADY PIKOVSKY AND ANTONIO POLITI PHYSICAL REVIEW E 63 036207
one. Section VI deals with a direct investigation of spa
time correlation properties of the proper observables. Fina
in Sec. VII, we summarize the main open problems.

II. LYAPUNOV VECTORS AS INTERFACES

In this section we briefly recall the results derived in R
@3# for the scaling behavior of the Lyapunov vector in spa
time chaos, and introduce the necessary formalism to dis
the problem in the next sections. We consider a fieldu(x,t)
that depends on one spatial coordinatexP@0,L# and timet,
and that obeys some nonlinear evolution equations yield
space-time chaos. For calculating the maximal Lyapunov
ponent, one has to follow the evolution of an infinitesim
perturbationw(x,t), obeying the linearized equations arou
the chaotic solutionu(x,t). It is convenient to introduce the
logarithmic amplitude of an infinitesimal perturbation as
scalar field

H~x,t !5 loguuw~x,t !uu, ~1!

whereuu•uu is some spatially local norm. In Ref.@3# we have
found that in a rather broad class of systems,H(x,t) exhibits
the scaling behavior predicted for roughening interfac
More precisely,H(x,t) belongs to the universality class o
the Kardar-Parisi-Zhang equation

ht5Dhxx1n~hx!
21v1j~x,t !, ~2!

wherej(x,t) is a zero-averaged-correlated~both in space
and time! process, andD, n, and v are suitable effective
parameters. Although we cannot explicitly derive an eq
tion of like Eq. ~2! for the fieldH(x,t), in Ref. @3# we dem-
onstrated that the scaling properties ofH(x,t) for large sys-
tem sizesL and large observation timest coincide with those
of the solution of Eq.~2!. Below we recall these properties

It is known that the width

W~L,t !5A^h2&2^h&2 ~3!

of an initially flat interface evolves, for sufficiently largeL
and t, as

W~L,t !'LaFS tb

LaD , ~4!

with a51/2 andb51/3. The scaling functionF(y) behaves
linearly for smally, and converges to a constant value f
y→`. This implies that the interface profile converges,
ymptotically in time, to a Brownian motion, sinceW(L,`)
'AL.

Now we want to derive the expression for the scali
behavior of finite-size and finite-time corrections to t
Lyapunov exponent. The Lyapunov exponentl is nothing
but the average velocitŷHt&. From Eq.~2!, it is clear that
the dependence ofl on L and t is entirely contained in the
nonlinear term

l~L,t !5^ht&5v1n^~hx!
2&. ~5!
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In Fourier space,Dlªl(L,t)2v can be expressed as

Dl52nE
1/L

kmax
k2S~k,t !dk, ~6!

where S(k,t)5^uhku2& is the spatial power spectrum o
h(x,t) with an ultraviolet cutoff atkmax ~given, in the
present case, by the inverse of the lattice spacing!.

For an initially flat profile, the power spectrumS(k,t)
evolves in time according to

S~k,t !;kgu~ktd2const!. ~7!

Calculation of the interface width according to

W2~L,t !5E
1/L

`

S~k,t !dk,

and comparison with Eq.~4!, gives

g52122a, d5b/a. ~8!

By substituting Eq.~7! into Eq. ~6!, we obtain

Dl~L,t !'L2a22F F̃S tb

LaD G (2a22)/a

, ~9!

where the functionF̃ has the same scaling asF.
Upon recalling thata51/2 andb51/3, the above expres

sion reduces to the one derived in Ref.@7#. In particular, we
note that, sinceF(z) tends to a constant forz→`, the finite-
size correction scale as 1/L whenever the analogy with KPZ
dynamics holds. Conversely, in the infinite-space limit, t
correction to the asymptotic value of the Lyapunov expon
decreases asdl(t)'t22/3. Both predictions were success
fully tested in Ref.@3#. Here we have derived the expressio
for general values ofa andb, and we shall see later on tha
they still hold in the case of Hamiltonian systems althou
with different values of the critical exponents. In particula
we will use relation~4! to find the scaling constantb, look-
ing for the temporal growth of the interface width in a ve
large system. For a determination of the scaling constana,
we look at the spatial spectrumS(k), and findg from Eq.
~7!, thereby obtaining

a52
g11

2
. ~10!

III. MODELS

We consider a lattice ofL oscillators with periodic bound-
ary conditions described by the local displacementqi and
momentumpi . The reference Hamiltonian reads

H5(
i

Fpi
2

2
1V~qi 112qi !1U~qi !G , ~11!

where V(x) is the nearest-neighbor interaction potenti
while U(x) corresponds to the on-site potential. All variabl
are assumed to be scaled so as to be adimensional.
7-2
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DYNAMIC LOCALIZATION OF LYAPUNOV VECTORS IN . . . PHYSICAL REVIEW E63 036207
In the following we shall consider two main models:~i!
the so-called Fermi-Pasta-Ulamb model, characterized by
V(x)5x2/22x4/4 and by the absence of external forces; a
~ii ! the F4 model, characterized by harmonic interaction
V(x)5x2/2, and by a double-well on-site potential,U(x)5
2x2/21x4/4.

The dynamical equations of the FPU model read

q̇i5pi ,

ṗi5~qi 1122qi1qi 21!2~qi 112qi !
32~qi 212qi !

3,
~12!

while the linearized equations for the evolution of an infin
tesimal perturbationPi andQi are

Q̇i5Pi ,

Ṗi5@123~qi 112qi !
2#~Qi 112Qi !

1@123~qi 212qi !
2#~Qi 212Qi !. ~13!

Similarly, the dynamical equations for theF4 model are

q̇i5pi ,

ṗi5~qi 1122qi1qi 21!1qi2qi
3 , ~14!

and the corresponding equations for the perturbation rea

Q̇i5Pi ,

Ṗi5Qi 1122Qi1Qi 211~123qi
2!Qi . ~15!

The two models have been singled out as representative
amples of two different classes of systems: the FPU equa
describes the dynamics of an isolated system where the
mentum is conserved as well as the energy; in theF4 model,
the presence of an on-site potential breaks the translati
invariance and the conservation of the total momentum. S
a difference proves to be crucial, for instance, in determin
heat-conduction properties, since heat conductivity is ty
cally anomalous in the first case, while it is normal in t
latter context@8#.

In both cases we have decided to fix the same value of
energy densityE/L55. The two models have been sim
lated by implementing the so-called bilateral symplectic
gorithm @9#, with a time stepDt50.01. This choice already
proved good enough to guarantee that energy fluctuat
remain smaller than 1027. Additionally, as a further check
some of the simulations were successfully compared with
McLachlan-Atela algorithm.

In analogy to Ref.@3#, we introduce the local norm of th
perturbationPi ,Qi as wi(t)5APi

21Qi
2, and call the field

wi(t) the ‘‘Lyapunov vector.’’ We interpret its logarithm
Hi(t)5 ln wi(t) as the height of a pseudointerface. In Fig.
we show a snapshot of the ‘‘interface’’ profile for theF4

model. The profile looks definitely rough, although at first
seems to demonstrate larger deviations than one expects
Brownian motion ~in fact, some regions resemble Lev
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flights!. Such large fluctuations, which correspond appro
mately to 27 orders of magnitude in the snapshot of Fig
suggest the possibility of numerical problems in the integ
tion of the profile. In practice, the accuracy of the integrati
depends on the relative amplitude of the perturbation
neighboring sites@see the structure of Eqs.~13! and ~15!#.
The approximate continuity of the Lyapunov vector mak
such concerns almost immaterial. A more serious obstacl
the simulation of long chains is the possibility that eitheruQi u
or uPi u becomes so small that its squared value~needed to
determinewi) is smaller than the smallest useable number
the computer. In some of our simulations we have overco
this problem by either writing a suitable routine or integra
ing the equations in quadruple precision. For yet larger v
ues ofL, uQi u anduPi u themselves can become too small, b
we checked that this has never occurred in our simulatio

IV. NUMERICAL EVIDENCE OF ANOMALOUS
BEHAVIOR

A. Estimating the spatial exponenta

In order to estimate the spatial exponenta, we have made
use of Eq.~10!, determiningg from the power spectrum. The
linear perturbation field has been allowed to evolve for va
ous lattice lengths, until a stationary regime is attained
the witdh of the Lyapunov vectors. The spectraS(k) for
lengthsL5256, 512, 1024, and 2048 in the FPU model a
reported in Fig. 2. The very good overlap indicates that
lattice-size dependence is already quite negligible in this s
range. In the inset, we report the logarithmic derivativeg
5D(logS)/D(logk), computed by looking at doubling value
of the wave number. It converges~for k→0) to a value
clearly below22. As the exponentg is connected toa by
relation ~10!, we can conclude that the scaling behavior
definitely different from that expected for the KPZ unive
sality class (g522). However, a precise estimate ofg is a
difficult task both because of statistical fluctuations that
very prominent in the small wave number regime, and
view of the observed residual dependence of the logarith

FIG. 1. A snapshot of the profilewi for theF4 model in a chain
of length L51024 after a long transient. The energy density
E/L55, as in all other numerical studies presented in this pap
7-3
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slope onk. A best fit of the almost linear region in Fig.
yields g522.5. By approximately accounting for the sy
tematic growth, we suggest thatg522.660.1, although the
estimate of the error is quite uncertain, precisely in view
the slow but systematic dependence of the slope onk. The
above value corresponds toa50.860.05, which can be in-
terpreted as evidence of a superdiffusive~fractional Brown-
ian! spatial profile.

The same scenario is qualitatively confirmed by the ana
sis of the data for theF4 model ~see Fig. 3!. We again find
a good overlap among the spectra forL52048, 4096, and
8192, confirming that the system size in itself is not t
small. On the other hand, the analysis of the logarithm
slope reveals a consistent dependence ofg on k. While we
can definitely confirm thatg,22 also in this case, an est
mate ofg iteself is more problematic. We can conjecture th
g522.860.2. One should also note thatg523 is a limit
value that corresponds to an exponential localization, wh

FIG. 2. The spatial power spectrum of the logarithmic profileHi

for the FPU model~after a sufficiently long transient to guarante
reaching the asymptotic state!. The various curves refer toL
5256, 512, 1024, and 2048. In the inset, we report the logarith
derivative.

FIG. 3. The spatial power spectrum of the logarithmic profileHi

for the F4 model in a statistically stationary state. The vario
curves refer toL52048 ~triangles!, 4096 ~squares!, and 8192
~circles!. The logarithmic derivative is shown in the inset.
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Hi consists of straight lines~this is the localization that one
expects in disordered systems in the absence of any temp
dependence of the field variable!.

B. Estimating the temporal exponentb

In order to find the temporal exponentb, we followed the
development of the interface starting from a flat one@what
corresponds to a spatially uniform initial linear perturbati
wi(0)#. Equation~4! can be tested by looking at the tempor
evolution of the widthW(L,t). In Fig. 4 we have reported its
dynamics forL5256, 512, 1024, 2048, and 8192 in the FP
model, while Fig. 5 refers to theF4 problem@10#. One can
see that for short times there is a slow growth that is ess
tially determined by the structure of the specific model.
addition, there is an intermediate range that grows withL,
characterized by an almost power-law increase. Finally,
observe the saturation leading to a statistically stationary~in
time! interface~the spectra in Figs. 2 and 3 were computed
this regime!. The insets, wherein the logarithmic derivativ

ic

FIG. 4. Temporal growth of the width of the interfaceW for the
chain lengthsL5256, 512, 1024, 2048, and 8192 in the FP
model. Only for the largest lattice length is there an indication o
plateau for the logarithmic derivative~inset!, in between the initial
nonuniversal growth and saturation.

FIG. 5. Same as Fig. 4, but for theF4 model. The chain lengths
are 512–8192.
7-4
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FIG. 6. The Lyapunov exponentl(L,`) vs the chain length for the FPU~a! andF4 ~b! models.
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b is reported, show that yet larger lattice sizes would
needed in order to observe a clear plateau. In fact, the m
mum value of the slope keeps increasing withL, and only for
L58192 can we find evidence of a constant-slope region.
the basis of these last results, we can estimateb50.55
60.05 for the FPU model andb50.660.05 for the F4

model. Note, that the error is mainly statistical: there is
simple way to estimate the systematic deviations which
certainly visible if we look at the height of the curves in th
insets. In any case, the estimatedb values are definitely
larger than 1/3, the value predicted by the theory for K
interfaces.

Before going on, let us note that although the spatial a
temporal exponents are significantly different from the v
ues expected for the KPZ equation, the same is not true
the dynamical exponentz5b/a that is remarkably close to
3/2 in both cases. By taking the central values fora andb,
we obtainz51.45 and 1.5 for the FPU andF4 models, re-
spectively. This is an indication that a single physical eff
is responsible for the above observed anomalies.

C. Finite-size corrections to the Lyapunov exponent

We now conclude the discussion on the scaling proper
of the Lyapunov vectors with the finite-size analysis of t
Lyapunov exponent in the FPU model. The dependence
l(L,`) on L can be observed in Fig. 6~a!. With the help of
simulations performed with a longer chain (L58192) and
assuming a power-law convergence to the asymptotic va
we find thatlasªl(`,`)50.26560.001, while the conver-
gence rate is20.560.1. Before comparing with the theore
ical expectations, let us note that the finite-size correcti
are definitely larger in Hamiltonian problems compared
dissipative ones, and this should be taken as a serious
stacle to giving precise estimates. In view of this difficul
we suspect that most of the estimates of the largest expo
obtained in one-dimensional systems should be carefully
examined.

The results of a more detailed analysis of the finite-s
deviations are reported in Fig. 7, where they are depic
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versus a ratio of suitable powers oft andL in order to test the
validity of Eq. ~9!. A reasonably good overlap has bee
found by reportingt/L1.4 on the horizontal axis, and multi
plying ul2lasu by L0.45 ~the large deviations observed fo
short times are absolutely irrelevant, as they concern the
tial regime when no scaling behavior can be expected at!.
The exponent 1.4 should be compared with the dynam
exponentz that, on the basis of previous simulations, tur
out to be around 1.45. Such a difference is certainly comp
ible with the relatively large errors on the estimates of botha
and b. On the other hand, the vertical scaling factor 0.
should be compared with 222a'0.4: the deviation is the
same as in the previous case, confirming that the inaccu
is around 0.05. Once more, however, we want to w
against the existence of corrections that might cohere
drift the various exponents towards slightly different value
The opportunity of considering larger lattices is specifica
desirable for theF4 model, since we could not perform
reliable finite-size scaling analysis: in that case, we limit o
selves to reporting in Fig. 6~b!, the clearly slow dependenc
of the Lyapunov exponent on the system size.

FIG. 7. Scaling behavior of the finite-size corrections of t
Lyapunov exponent in the FPU model. The curves correspon
the systems of lengthsL5256, 512, 1024, 2048, and 8192~from
bottom to top!. The dashed line has a slope21/3.
7-5
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FIG. 8. Scaling properties of the field in the linearizedF4 model@Eq. ~15!#, when the multipliersMi(t) are reshuffled at regular interval
of time T540 ~a smooth connection between old and new multipliers was performed during the time intervalTs52). The graphs should be
compared with Figs. 3 and 5.
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V. ORIGIN OF ANOMALOUS SCALING IN THE
LYAPUNOV VECTOR

Having observed significant differences with respect
the KPZ-class behavior, we shall now discuss the poss
sources for the observed anomalies. There are at least
reasons for these.

~i! The equation describing the dynamics of the Lyapun
vector @Eqs.~13! and ~15!# is of wave type~second order in
time!, and thus qualitatively different from the KPZ equ
tion, where inertia does not enter. It is therefore not cl
whetherHi5 lnuuwiuu indeed satisfies an effective KPZ equ
tion on sufficiently large spatial scales and over sufficien
long times.

~ii ! The effective noise may have long-range correlatio
in space and/or in time. Indeed, the recent study of h
conductivity in one-dimensional chains has revealed tha
least the correlations of the global heat flux decay with
power law in the FPU model@11#. On the other hand, this i
not true in theF4 model, where thermal conductivity is no
mal, so that this hypothesis needs a careful examination

A. Tangent space dynamics in the presence of short
range correlations

In order to test whether the discrepancies discusse
Sec. IV are due to the lack of a connection with the KP
equation, we have decided to remove the possible long-ra
correlations potentially contained in the spatio temporal
havior of the multipliers

Mi~ t !ª123~qi 112qi !
2 ~16!

~for the FPU model! and

Mi~ t !ª123qi
2 ~17!

~for theF4 case!. In order to preserve as much as possible
the original structure, we have preferred to suitably mod
the Mi(t) in Eqs. ~13! and ~15! rather than replacing them
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with a random noise. More precisely, we have proceeded
first removing spatial correlations with a random reshuffli
of the multipliers, i.e. by replacingMi(t) with M j ( i ) , where
j ( i ) is a bijective random function from the interval 1, . . . ,L
onto itself. In order to get rid of temporal correlations, w
further reshuffle@randomly change the functionj ( i )# everyT
time units. Finally, since the instantaneous switch from o
to another given function introduces an undesired disco
nuity, we have smoothed the connection between cons
tive time intervals. As a result, all possible correlations a
destroyed, and we are in the position to test whether
tangent-space dynamics does really imply a KPZ-class
havior. From Fig. 8, one can see that the expected sca
behavior is fully restored for what concerns both spatial a
temporal scalings. Furthermore, we have calculated
skewnesŝ H̄3&/W3 and the kurtosiŝH̄4&/W423 of the in-
terface profiles~whereH̄5H2^H&). These quantities mea
sure the closeness to the Gaussian distribution. In the o
nal dynamics of the Lyapunov vector these quantities
already quite small,'20.06 and'20.4, respectively. Af-
ter removing correlations, they are further reduced
'0.025 and'20.1, meaning that the distribution is Gaus
ian with a good accuracy. We can thus conclude that the
concern is unmotivated, and we should really attribute
anomaly to the existence of long correlations in the dyna
ics.

B. Role of correlations

Recent studies of the scaling behavior of the KPZ eq
tion in the presence of either long spatial or temporal cor
lations showed that sufficiently long-ranged correlations c
indeed modify the critical exponents~see Ref.@7#, and ref-
erences therein!. As a particular example, we discuss th
effect of long-range spatial correlations. Upon assuming t
the spatial power spectrumSj(k) of the noise termj in Eq.
~2! behaves as

Sj~k!5k22c ~18!
7-6
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DYNAMIC LOCALIZATION OF LYAPUNOV VECTORS IN . . . PHYSICAL REVIEW E63 036207
in the region of small wave numbers, it was found throu
renormalization group calculations@12# that, forc.1/4,

a512
2

3
~12c!, b5

112c

522c
. ~19!

A blind use of the above formulas for the values ofa andb
presented in Sec. IV gives inconsistent results: from the
relation it followsc'0.7, but the resulting valueb50.66 is
too large compared with our numerical findings. The pictu
does not change even if we refer to the theoretical pre
tions of the replica method@13#, since this latter approach i
equivalent to the former one forc.1/2.

Since there is no direct way to connect the origin
tangent-space dynamics@Eqs. ~13! and ~15!# with an effec-
tive KPZ @Eq. ~2!#, we cannot directly estimate the correl
tion properties of the effective noisej(x,t). However, we
can demonstrate that the anomalous scaling cannot be
plained with spatial correlations like Eq.~18! only. To get rid
of spatial correlations we performed one single reshuffling
the multipliersMi . In this procedure the temporal one-si
correlations remain unaffected, while the spatial correlati

FIG. 9. Power spectrum of the logarithmic profile for the FP
model after a reshuffling of the multipliers. The logarithmic deriv
tive is reported in the inset.
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are destroyed. The results for the power spectra in the F
andF4 problems are reported in Figs. 9 and 10, respective
We see that the scaling exponentsa andb are now closer to
the KPZ values, but still there is a distinct difference.
particular, for g we obtain values smaller than22, what
corresponds toa.1/2. We can, therefore, conclude that bo
spatial and temporal correlations of the multipliersMi(t)
play crucial role in the anomalous scaling of the Lyapun
vector interface.

VI. DIRECT STUDY OF SPACE-TIME CORRELATIONS

In this section we report the results of direct studies of
correlation properties in the Hamiltonian lattices@Eqs. ~12!
and ~14!#. Usually one looks at the simplest observabl
namely, the variablespi(t), and qi(t) themselves. In our
case, these observables do not exhibit any interesting be
ior: in the F4 model, no long-range correlations are prese
at all, while in the FPU model, theqi ’s show a trivial diffu-
sion due to the lack of external forces. Contrary to the pr
erties of positions and momenta, in Ref.@11# it has been
shown that in the FPU lattice the local heat flux is charac
ized by nontrivial correlations. This dependence on the
servable indicates that the problem of characterizing the
relations is rather difficult@14#. In this paper, without
pretending to derive general conclusions, we limit oursel
to studying the multipliersMi(t), defined as in Eqs.~16! and
~17!. All the correlation functions reported in this paper ha
been computed by Fourier-transforming a sufficiently lo
signal ~pattern! sampled every 0.1 time units, and by afte
wards averaging over at least 1000 different realizations

Let us start by discussing the FPU case. In Fig. 11
report a gray scale plot of the logarithm of the amplitude
the correlation functionCM( i ,t)5u^M j (t)M j 1 i(t1t)&u of
the multiplier. There one can see that the strongest corr
tions are either found along the linei 5vt @a best fit yields
v52.1(1)#, or for i 50. This is consistent with the previou
analysis of the local heat flux~see Ref.@11#! in the same
model, which also revealed the existence of a propagatio
correlations with a constant velocity that was traced back
, but not
FIG. 10. The same as Fig. 8, but the reshuffling is performed only once; as a result, only spatial correlations are destroyed
temporal ones. The logarithmic derivatives~insets! still deviate from the standard values of the KPZ-class behavior.
7-7
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the quasi uncoupled behavior of the low wave number F
rier modes.

Therefore, there is no direct connection with the previo
studies of KPZ dynamics in the presence of correlated no
since the anomaly is neither purely spatial nor purely tem
ral. Looking more carefully at the pattern in Fig. 11, we fin
that equal-time spatial correlations~i.e., the uppermost hori
zontal slice in the figure! ared like ~the same also holds fo
the F4 model!. On the other hand, the standard tempo
correlation in a given site decays as power law~see Fig. 12!.
Even though the rate cannot be accurately determined,
can confirm that such temporal correlations alone are
sufficient to explain the anomalous behavior of t
Lyapunov vector, since the decay is nevertheless too fas
be compatible with the scaling behavior of the Lyapun

FIG. 11. Gray scale plot of the logarithm of the absolute va
of the correlation function of the multiplier for the FPU model in
chain of 256 oscillators for a time span equal to 26.4. Space
horizontally, while time flows vertically from top to bottom. Dar
regions correspond to stronger correlations.

FIG. 12. One-site temporal correlationsCM(0,t) of the multipli-
ersMi(t) in the FPU model. Data for different chain lengths~from
bottom to top,L5128, 256, 512, and 1024! demonstrate conver
gence to a power law decay with the exponent'20.9 ~dashed
line!.
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vector. Thus it is even more clear that correlations due to
propagation are crucial as well. A direct estimate of corre
tions along a properly moving frame yields the results
ported in Fig. 13, where an apparent power-law decay
observed. Moreover, we observe that, as in Fig. 12, the de
is affected by strong finite-size corrections. This may be
reason for the difficulties encountered in our attempts to
tain precise estimates of the critical exponents from an in
facelike analysis of the Lyapunov vectors.

In theF4 model we do not observe propagation of corr
lations with a definite velocity. In this case, there is only
slow decay of the one-site correlationsCM(0,t). We illus-
trate this by reporting the temporal power spectrumS(v) of
the multiplier Mi(t) in Fig. 14, where one can observe
low-frequency divergence,S(v);vd with d520.47
60.03. From the approximate formulaa5(0.22–0.845d),
derived in Ref.@12# for purely temporal correlations, we fin
a'0.62. Upon inverting Eq.~10!, we find g'22.2. This
result is in close agreement with the direct estimate ofa after
having removed spatial correlations~see the inset of Fig. 10!.

e

ns

FIG. 13. Decay rate of temporal correlations of the multiplier
a moving frame with velocityv52.1(1) for chain lengthsL
5128, 256, 512, and 1024 in the FPU model~from bottom to top!.
The slope of the dashed line~drawn as a reference! is 21.2.

FIG. 14. Temporal power spectrum of the multipliers in theF4

model for a lattice of lengthL52048. The inset shows the loca
logarithmic derivative at small frequencies.
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Therefore, we again confirm that also in theF4 temporal
correlations alone are not sufficient to account for
anomalous scaling exhibited by the Lyapunov vectors.

VII. CONCLUSIONS

In this paper we have carried on a detailed study of
scaling properties of the Lyapunov vector in two Ham
tonian ~Fermi-Past-Ulam andF4 models! chains, finding
clear evidence of an anomalous behavior with respect to
previously studied one-dimensional space-time chaotic
tems. Although the data presented are restricted to one s
parameters~including the density of energy!, further selected
simulations suggest that this anomaly exists at least i
broad parameter region if not everywhere. This anomaly
analogous to the divergence of the heat conductivity~in a
broad subclass of one-dimensional Hamiltonian systems! in
the sense that both phenomena can be traced back to
existence of long-range correlations of suitable observab
A deeper understanding of such anomalies can there
arise only from a better comprehension of spatiotempo
correlations. In Ref.@11#, it was shown that in the FPU
model they are connected with the ‘‘hydrodynamic’’ beha
ior of the long-wavelength Fourier modes, and that se
consistent mode-coupling theory enables one to predict
correct divergence rate of the heat conductivity. Such an
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proach is, however, insufficient to describe the whole spa
time structure of the multiplier correlations. In particular,
does not predict any slow decay of correlations in theF4

model, but also fails to predict the correct decay of t
purely temporal correlations of multipliers in the FPU cas
So far, one can only suspect that the existence of conse
tion laws is responsible for long-range correlations: energ
conserved in both the FPU andF4 models, and its diffusion
properties might be the ultimate source for the similar beh
iors exhibited by two otherwise rather different mode
However, only when a global coherent description of t
long-time properties of the relevant observables will be o
tained, it will be possible to establish whether the near equ
ity of the scaling exponents observed in FPU andF4 models
is indeed an indication that both belong to the same univ
sality class.
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